致曲术
一卷。清夏鸾翔 (详见 《洞方术图解》)撰。《致曲术》专事研究二次曲线,其中用无穷级数展开的方法解决椭圆积分中的问题,颇有创新之处。项、戴椭圆求周术与李善兰尖锥求积术均提出了定积分的级数展开表达之方法,夏氏则加以推广,例如他给出了椭圆上一段椭弧长S的幂级数展开式,为此他创造了 “椭正弦求椭弧背术”,这在我国是为首创。他的幂级数与现代用定积分求出的结果完全一致。《代微积拾级》 只有计算椭圆绕长轴旋转所成曲面的全部面积公式,在《致曲术》中夏鸾翔创立了表达一段椭弧绕长轴或短轴旋转而成曲面面积的级数展开式,他还解决了一些有关抛物线、对数曲线和几 ...... (共394字) [阅读本文]>>